Verifying the Accuracy of Polynomial Approximations in HOL

نویسنده

  • John Harrison
چکیده

Many modern algorithms for the transcendental functions rely on a large table of precomputed values together with a low-order polynomial to interpolate between them. In verifying such an algorithm, one is faced with the problem of bounding the error in this polynomial approximation. The most straightforward methods are based on numerical approximations, and are not prima facie reducible to a formal HOL proof. We discuss a technique for proving such results formally in HOL, via the formalization of a number of results in polynomial theory, e.g. squarefree decomposition and Sturm's theorem, and the use of a computer algebra system to compute results that are then checked in HOL. We demonstrate our method by tackling an example from the literature.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bernstein-based polynomial approach to study the stability of switched systems and formal verification using HOL Light

In this preliminary work, we propose to use a polynomial approach in order to study the stability of switched systems. The proposed strategy is based on the Bernstein interpolation method that may transform a switched system into a polynomial expression from which an associated ”simple” Lyapunov function can be eventually built. The HOL Light proof assistant allows verifying formally the Lyapun...

متن کامل

The best uniform polynomial approximation of two classes of rational functions

In this paper we obtain the explicit form of the best uniform polynomial approximations out of Pn of two classes of rational functions using properties of Chebyshev polynomials. In this way we present some new theorems and lemmas. Some examples will be given to support the results.

متن کامل

Formal Verification of Nonlinear Inequalities with Taylor Interval Approximations

We present a formal tool for verification of multivariate nonlinear inequalities. Our verification method is based on interval arithmetic with Taylor approximations. Our tool is implemented in the HOL Light proof assistant and it is capable to verify multivariate nonlinear polynomial and non-polynomial inequalities on rectangular domains. One of the main features of our work is an efficient imp...

متن کامل

HOL Theorem Prover Case Study: Verifying Probabilistic Programs

The focus of this paper is the question: “How suited is the HOL theorem prover to the verification of probabilistic programs?” To answer this, we give a brief introduction to our model of probabilistic programs in HOL, and then compare this approach to other formal tools that have been used to verify probabilistic programs: the Prism model checker, the Coq theorem prover, and the B method.

متن کامل

Convergence of Numerical Method For the Solution of Nonlinear Delay Volterra Integral ‎Equations‎

‎‎In this paper, Solvability nonlinear Volterra integral equations with general vanishing delays is stated. So far sinc methods for approximating the solutions of Volterra integral equations have received considerable attention mainly due to their high accuracy. These approximations converge rapidly to the exact solutions as number sinc points increases. Here the numerical solution of nonlinear...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1997